Carbon energy window ↔ A_N uncert.

Pol. mtg. 19.05.11

• We measure polarization (asymmetry) in some k.e. window:

$$E_{min} < T < E_{min} + E_{width}$$

• Window has effective analyzing power, event-weighted A_N(T):

$$A_{N-\text{eff}} = \int dT \, A_N(T) \, dN/dT \, / \int dT \, dN/dT$$

$$A_N(T) = \text{analyzing power @ T}$$

$$dN/dT = \text{carbon T distribution}$$

$$\int \text{'s over E}_{\min} < T < E_{\min} + E_{\text{width}}$$

- Statistical uncert. on P=ε/A_{N-eff}: 1/(A_{N-eff}√N)
 N = total # events = ∫dT dN/dT
- Systematic uncert. on A_{N-eff} : run-to-run variations of window (E_{min} , E_{width})
- Can: optimize window, determine uncertainties
- No final #'s here; just qualitative discussion

A_{N-eff} calculation

dN/dT (from data):

Fit dN/dT ∝ exp(-BT); B=2.2MeV⁻¹

$A_{N}(T)$ (from Sasha, Run??):

Fit 2nd order poly. in T

- Evaluate A_{N-eff} for various (E_{min},E_{width})
- Determine stat. uncert. 1/(A_{N-eff}√N)
- Determine sensitivity to variations (E_{min}, E_{width})

N_{evt} & A_{N-eff}

• As functions of (E_{min}, E_{width}) :

- A_{N-eff} largest at small E_{min}: dN/dT, A_N(T) largest small T
- A_{N-eff} largest at small E_{width} : diluted by smaller $A_{N}(T)$ at growing T

$P=\epsilon/A_{N-eff}$ stat. uncert.

∝1/(A_{N-eff}√N) ; absolute value here arbitrary

Stat. uncert.:

- Smaller with decreasing E_{min}
- $_{\!\!\!\text{e}}$ Broad minimum above some low $\boldsymbol{E}_{\!\!\!\!\text{width}}$ (increase statistics, $\boldsymbol{N}_{\!\!\!\!\text{evt}}$)

A_{N-eff} sys. uncert.

<u>First:</u> why characterize E-window by (E_{min}, E_{width}) ?

- Energy scale uncertainty: e.g. scale from α calib., shift from dead layer
 - lower/upper edges of E-window move together
 - estimate effect by varying E_{min}, hold E_{width} fixed
- Relative energy uncertainty:
 - on difference between two energies, e.g. low/up edges E-window
 - estimate effect by varying E_{width}, hold E_{min} fixed
- Usually $\sigma(\mathsf{E}_{\mathsf{scale}}) > \sigma(\mathsf{E}_{\mathsf{relative}})$

This quick study:

- Make variations of $(E_{\min}, E_{\text{width}})$, look at relative variation $\delta A_{\text{N-eff}}/A_{\text{N-eff}}$
- Take $\sigma(E_{\text{scale}}) = \sigma(E_{\text{relative}}) = 50 \text{ keV}$, ~size of dead layer correction hopefully a big overestimate
- Add (E_{min},E_{width}) variations in quadrature
 each separately have same dependences as sum

A_{N-eff} sys. uncert.

Sys. uncert.:

- Smaller with decreasing E_{min}
- Smaller with decreasing E_{width}

A_{N-eff} window

• Presently use window 0.4-0.9 MeV★:

- Present window is sensible in terms of uncertainties
- With numbers for $N_{\rm evt}$, $\sigma(E_{\rm scale})$, $\sigma(E_{\rm relative})$ can evaluate uncert. <u>Improvement?</u>
- Could improve (somewhat) by lowering E_{min}
- But: low energy features on (Energy, Time) plot???

Low Energy on (Time, Amp) plot

Banana + additional low energy features:

run 154732.306 @ 24 GeV fChannel.fTdc:fChannel.fAmpltd {fEventId.fChannelId<72} Channel.fTdc **TDC** units hi-t peak = 1.2 nS60 pulser 50 40 ow-t peak 30

150

200

fChannel.fAmpltd
ADC counts

250

- What are they?
- Can we work around, use banana @ <0.4 MeV?</p>

T≈0.4 MeV

50

100

hi-t Low Energy peak

• All bunches #0-119:

Empty bunches #111-118:

- The low-t low E peak is an 'echo' of the pulser, ~same rate outside time window @ 250 GeV; not seen in other polar. @ 24 GeV

low-t Low Energy peak

• Rate vs. time in BAN, PEAK:

- The low-t Low-E peak is a pC scattering product
- With ~calibration, it has E≈0.23 MeV, TOF≈46 nS
- If E is kinetic energy, it has M≈2.7 GeV ???
- Shown here in Y2D @ 24 GeV; in all polarim., all E (I think)
- What is it?
- Does is have an asymmetry?

EXTRAS

last bunch #119

- pulser in empty bunches #111-118:
- pulser in empty bunche #119:

- Igor warned about problems with last bunch
- Here see time shifted ~+12 TDC units
- Pulser 'echo' shited above t-window

low-t Low Energy peak

Rate vs. bunch #

• The low-t Low-E peak is not in empty bunches

low-t Low Energy peak

E ~ 0.23 MeV ; t ~ 46 nS